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Abstract. The spectral vanishing viscosity (SVV) method has recently appeared of interest
for the large-eddy simulation (LES) of turbulent flows. Here we show that the SVV-LES
approach allows to easily compute turbulent quantities, like the dissipation rates of the
turbulent kinetic energy or of the variance of a passive scalar and to clearly discern the
subgrid and viscous contributions. Results obtained for the turbulent wake of a cylinder
in a weakly stratified fluid are provided.

1 INTRODUCTION

The Spectral Vanishing Viscosity (SVV) method, first developed to handle 1D hy-
perbolic problems with spectral methods [14, 22], has recently appeared of interest for
the large-eddy simulation (LES) of turbulent, and so multiscale, flows [8, 15]. Basically,
the idea is to stabilize the computation by completing the momentum equation with a
dissipation term only active in the high-frequency range of the spectral approximation.

The main advantage of the SVV method is to preserve the exponential rate of conver-
gence of the numerical solution towards the exact (smooth) one. Moreover, numerical
experiments have shown that the flows thus computed actually show the characteris-
tics of turbulent flows, in terms of statistical moments and agreement with Kolmogorov
theory. This has given rise to a SVV-LES approach for the computation of turbulent flows
[9, 16, 17, 18].

Here our goal is to show that in the frame of a SVV-LES it is easy to provide a detailed
analysis of the dissipation of the energy, say of the transfer of energy from the resolved to
the non-resolved scales. This results from the fact that, contrarily to some other Implicit
LES (ILES) or MILES (Monotone Integrated LES) approaches [1, 21], just like in classical
LES the stabilization term is explicitly introduced. With respect to a low-order classical
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LES, using a high-order method shows the advantage that there is no mixing between the
approximation and modeling errors, so that one can expect to obtain accurate estimations
of turbulent quantities, like the dissipation rates of the turbulent kinetic energy or of the
variance of a passive scalar.

Note that the SVV-LES approach is close to multiscale formulations, which make
use of artificial dissipation at the smallest scales to stabilize Galerkin approximations of
transport dominated problems [5, 6].

Our plan is the following : In Section 2 we recall how to express the SVV term in a
multidimensional framework and then express the dissipation rate and pseudo-dissipation
rate of the turbulent kinetic energy. A similar approach is used to express the dissipation
rate of the variance of a passive scalar. In Section 3 we provide results obtained for the
wake of a cylinder in a thermally stratified fluid. We conclude in Section 4.

2 DISSIPATION RATES IN THE SVV-LES FORMULATION

2.1 The SVV stabilization term

We are interested in the stabilization of the spectral approximation of some transport-
diffusion problem. With N for the space discretization parameter, in the 1D scalar case
the SVV stabilization term reads :

VN = εN∂x(QN(∂xuN)) (1)

where εN is a O(1/N) coefficient, QN a spectral viscosity operator and uN(x, t) the nu-
merical solution (x and t are the space and time variables). Thus, in the non-periodic
case investigated in [14], with u =

∑
k≥0 ûkLk ∈ L2(−1, 1), where Lk is the Legendre

polynomial of degree k :

QN(u) ≡
N∑

k=0

Q̂kûkLk (2)

where Q̂k = 0 if k ≤ mN and 0 < Q̂k < Q̂k+1 ≤ 1 if k > mN , with e.g. mN =
√

N and
Q̂k = exp(−(k −N)2/(k −mN)2).

The extension to the multidimensional case is not trivial, as shown by the different
variants met in the literature [4, 7, 8, 23]. For us we advocate the following form :

VN = ∇ · (εNQN(∇uN)) , εNQN ≡ diag{εNi
Qi

Ni
} (3)

with Qi
Ni

the 1D SVV operator acting in direction xi. Thus, we actually use a diagonal
matrix form of the operator εNQN , just as one introduces a non-scalar diffusivity when
anisotropic media are considered. Moreover, if a mapping f : Ω̂ → Ω from the reference
domain Ω̂ to the physical domain Ω is involved, then we use :

εNQN(∇uN) ≡ εNQN(∇̂(uN ◦ f)) (G ◦ f) (4)
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where G is the Jacobian matrix of f−1 and where .̂ refers to the variables of the reference
domain.

The SVV stabilization can be simply implemented by combining the diffusion and SVV
terms to obtain, with λ > 0 for a conductivity coefficient :

∇ · (λ∇uN) + VN = ∇ · λSN(∇uN) (5)

where SN ≡ 1+λ−1εNQN . With our definition of εNQN and with ∂j for the differentiation
with respect to xj, we then have :

∇ · (λ∇uN) + VN =
∑
j

∂j (λ ∂̃juN) (6)

where ∂̃j = (1 + λ−1εNj
Qj

Nj
)∂j.

We are now ready to express the dissipation rates of the turbulent kinetic energy and of
the variance of a passive scalar for an incompressible flow. These quantities appear as sink
terms in the corresponding evolution equations, which are derived from the incompressible
Navier-Stokes and transport-diffusion equations, respectively.

2.2 Dissipation rate of the turbulent kinetic energy

The approach follows what is usually done, see e.g. [20] for details, except that we start
from the SVV-stabilized incompressible Navier-Stokes equations :

∂tūi + ūj∂jūi = −∂ip̄ + ν∂j ∂̃jūi (7)

∂jūj = 0 (8)

where summation over repeated indices is assumed, with ∂̃j based on the kinematic vis-
cosity ν and where ūi and p̄ stand for the SVV-LES approximations of the i-component
of the velocity and of the pressure divided by the density, respectively. Note that we use
the usual LES notations, with an over-bar to express the fact that at the end we will
only compute some “ filtered quantities”, even if we have not followed the usual LES
methodology, based on the filtered Navier-Stokes equations.

To obtain an equation for the specific kinetic energy of the filtered velocity, ef = ūiūi/2,
we multiply eq. (7) by ū to obtain :

D̄tef + ∂j(ūj p̄− νūi∂̃jūi) = −ε̃ (9)

with D̄t ≡ ∂t + ūj∂j and where appears the pseudo-dissipation term

ε̃ = ν∂jūi∂̃jūi . (10)

Here the flux term does not show the work of the viscous and sub-grid forces, which should
be associated for an incompressible Newtonian flow to the tensor : S̃ij = (∂̃iūj + ∂̃jūi)/2.
With a correct formulation of the flux one has :

D̄tef + ∂j(ūj p̄− 2νūiS̃ij) = −ε
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where appears the dissipation term :

ε = ν(∂jūi∂̃jūi + ∂j(ūi∂̃iūj)) . (11)

If we assume that ∂j and ∂̃j commute, with the continuity equation and thanks to the
symmetry of the S̃ij tensor, one obtains :

ε = 2νSijS̃ij . (12)

Without SVV stabilization, then ∂̃j ≡ ∂j and S̃ij ≡ Sij, so that one recovers the usual
form of the dissipation term. Note however that SijSij ≥ 0, whereas ε, from eq. (12), may
be negative, giving then the possibility of a local transfer of energy from the non-resolved
to the resolved scales (backscatter phenomenon).

From the eq. (10) and (12), it is now possible to compute the pseudo-dissipation and
dissipation rates of the turbulent kinetic energy. Thus, for the dissipation rate, with < . >
to denote a statistical mean,

< ε >= 2ν < Sij >< S̃ij > +ε

where the first term in the right hand side is the dissipation due to the mean flow and ε
the dissipation rate of the turbulent kinetic energy :

ε = 2ν(< SijS̃ij > − < Sij >< S̃ij >) . (13)

Similarly, the pseudo-dissipation rate writes :

ε̃ = ν(< ∂jūi∂̃jūi > − < ∂jūi >< ∂̃jūi >) . (14)

Remark : To obtain the expression (12) we have assumed that the operators ∂j and ∂̃j

commute. This is exact in the Fourier case, since for the mode k, ∂j = ikj and ∂̃j ∝ ikj.
There is however an approximation in the Legendre or Chebyshev cases.

2.3 Dissipation rate for a passive scalar

The approach is quite similar. With ∂̃j based on the diffusivity a of the passive scalar
T , the evolution equation reads :

∂tT̄ + ūj∂jT̄ = a∂j ∂̃jT̄

so that by multiplying by T̄ and with eT = T̄ T̄ we obtain :

D̄teT = 2aT̄∂j ∂̃jT̄

D̄teT + ∂j(−2aT̄ ∂̃jT̄ ) = −εT (15)

with the dissipation term :

εT = 2a∂jT̄ ∂̃jT̄ . (16)

For the dissipation rate of the variance of T this yields :

εT = 2a(< ∂jT̄ ∂̃jT̄ > − < ∂jT̄ >< ∂̃jT̄ >) . (17)
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3 Application to the stratified wake of a cylinder

Here we focus on the turbulent wake of a cylinder in a weakly linearly stratified fluid.
The Reynolds number equals Re = 3900 and the Prandtl number Pr = 7. The Bousssi-
nesq approximation is used to model the thermal-hydrodynamic, with an internal Froude
number F = U/ND = 75, where U is the upstream velocity, N the Brunt-Väisälä angular
frequency and D the diameter of the cylinder. For the non-stratified case, which consti-
tutes a standard test-case [10, 12], comparisons with experimental results are provided in
[18] and a sensitivity study to the SVV parameters is carried out in [17].

3.1 Characteristics of the computation

The main characteristics of the computer code are the following :
– The time-scheme is second-order accurate and makes use of three steps : (i) Transport

step : The convective terms are handled explicitly with an OIF (Operator Integration
Factor) semi-Lagrangian method [13]. (ii) Diffusion step : the diffusion terms are
handled implicitly. (iii) Projection step : a Darcy problem is solved to obtain a
divergence free velocity field and the pressure is then updated.

– A multi-domain technique is used in the elongated streamwise direction. In each
subdomain a Chebyshev collocation method is used in the streamwise and crossflow
directions, whereas a Fourier Galerkin method is used in the homogeneous spanwise
direction.

– The obstacle is modeled by using a “ pseudo-penalization” technique.
– The code is vectorized and parallelized, each subdomain being associated to a dif-

ferent processor.
Details on the algorithm may be found in [3, 16, 19].

The characteristic parameters of the computation are :
– Computational domain : Ω = (−6.5, 17.5) × (−4, 4) × (−2, 2). The cylinder is of

unit diameter and centered at x = y = 0 (x, y, z : streamwise, crossflow vertical and
spanwise directions).

– Initial conditions : the fluid is at rest and linearly stratified : T = y in dimensionless
form. Boundary conditions : free-slip and adiabaticity conditions at y = ±4, Dirichlet
conditions, u = (1, 0, 0) and T = y, at x = −6.5 (inlet), advection at the mean flow
velocity at x = 17.5 (outlet).

– Mesh : Number of subdomains : 5, the interfaces of the subdomains are located at
x = {−0.5, 2.5, 6.5, 11.5} ; Polynomial approximation degrees in each subdomain :
N1 = 60, N2 = 120 in x and y directions, respectively ; Number of Fourier grid
points : NF = 60. Time step : 5. 10−3.

– SVV parameters : mN = N/2 and εN = 1/N .
– The statistics have been computed on 150 dimensionless time units (D/U).
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Fig. 1: Streamwise velocity (top) and temperature (bottom) instantaneous fields in the median vertical
plane, Re = 3900, F = 75, Pr = 7.

3.2 Numerical results

Qualitative results on the computed flow are shown in Fig. 1, where instantaneous
temperature and streamwise velocity fields are visualized. Such results are very similar
to those obtained when the stratification is not active (F = ∞), in agreement with
experimental investigations [2]. In a referential moving with the fluid, one expects, in the
high Foude number regime, to have an influence of the stratification for Nt/(2π) ≥ 0.1,
where t stands here for an elapsed time [11]. With F = U/ND, one may then expect to
have an influence of the stratification for x ≥ 0.2πF ≈ 47 � 17.5. More quantitatively,
we have checked that for x ≤ 17.5 the flows obtained with F = 75 and F = ∞ are similar
in terms of statistical moments or power spectra. Here we rather focus on the turbulent
kinetic energy, temperature variance and corresponding dissipation rates.

In Fig. 2 (left) are shown profiles of the turbulent kinetic energy at different streamwise
locations (top) and the x-variations along the streamwise centerline y = z = 0 (bottom).
Similar results for the temperature variance are shown in Fig. 2 (right). Such results are
not completely statistically converged, with a few per cents variations in the homogeneous
spanwise direction and some symmetry deficiencies in the profiles. Clearly the behaviors of
the turbulent kinetic energy and temperature variance are strongly different. The former
shows a maximum for x ≈ 2.5 and then smoothly decays whereas the latter goes on in
increasing at the outlet of the computational domain. This is associated to the fact that
the characteristic time-scale associated to thermal diffusion, i.e. D2/a, where a is here
the thermal diffusivity, is much greater than the inertial time scale D/U . Moreover, the
temperature variance does not correspond to a physical energy.

The dissipation rates of the turbulent kinetic energy, times the Reynolds number Re =
3900, and temperature variance, times the Péclet number Pe = 27300, are shown in
Fig. 3. Such results have been obtained from the eq. (13) and (17), with ν = a = 1.

6



R. Pasquetti

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-4 -3 -2 -1  0  1  2  3  4

T
ur

bu
le

nt
 k

in
et

ic
 e

ne
rg

y

Cross flow direction

x=2.02
x=5.98
x=9.98

x=16.06

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-4 -3 -2 -1  0  1  2  3  4

T
em

pe
ra

tu
re

 v
ar

ia
nc

e

Cross flow direction

x=2.02
x=5.98
x=9.98

x=16.06

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-5  0  5  10  15

T
ur

bu
le

nt
 k

in
et

ic
 e

ne
rg

y

Streamwise  direction

y=z=0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5  0  5  10  15

T
em

pe
ra

tu
re

 v
ar

ia
nc

e

Streamwise  direction

y=z=0

Fig. 2: Turbulent kinetic energy (left) and temperature variance (right) at different x-locations (top) and
along the streamwise central line (bottom).

The thermal profiles are especially non-smooth, with sharp variations in the streamwise
direction. These sharp variations are partially associated to the subdomain decomposition,
but the general trend is captured. Here again one observes very different behaviors for the
turbulent kinetic energy, with a maximum of the dissipation rate at x ≈ 2, and for the
temperature variance.

Finally, we compare in Fig. 4 the contributions of the SVV stabilization term and of
the diffusive term by plotting the dissipation rates, from the eq. (13) and (17), and those
obtained when using ∂j rather than the SVV modified derivative ∂̃j. For the turbulent
kinetic energy the contributions are roughly of same magnitude, whereas for the tempe-
rature variance the stabilization term is dominant, essentially because the Péclet number
is much larger than the Reynolds number (Pe/Re = Pr = 7). For the turbulent kinetic
energy we also compare the dissipation and pseudo-dissipation rates, as computed with
the eq. (13) and (14), respectively. As usually found with the classical definitions of these
quantities, i.e. with ∂̃j = ∂j, the two expressions give very close results.
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Fig. 3: Dissipation rates of the turbulent kinetic energy times Re (left) and temperature variance times
Pe (right) at different x-locations (top) and along the streamwise central line (bottom).

4 CONCLUSION

For a good understanding of turbulent flows a detailed analysis of turbulence quan-
tities, like the turbulent kinetic energy and dissipation rate of this energy, is required.
There is generally no problem to compute the turbulent kinetic energy from the filtered
velocity, because the contribution of the non-resolved small scales is negligible. However,
this no-longer holds for the dissipation rate, because the energy transfer occurs essentially
from the resolved to the non-resolved scales. Here we have shown that just for a classical
LES, i.e. based on a modeling of the “sub grid stress tensor”, it is easy in the SVV-LES
framework to express the dissipation rate of the turbulent kinetic energy and to clearly
discern the diffusive and subgrid parts. This is generally not true for ILES methods and
with respect to a low-order classical LES, using a high-order approach allows us to elimi-
nate the numerical dissipation. A similar work has been carried out for a passive scalar
and results obtained for the turbulent wake of a cylinder in a weakly stratified fluid have
been presented.
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